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J. Phys. A: Math. Gen. 14 (1981) L533-L536. Printed in Great Britain 

LElTER TO THE EDITOR 

On phase separation in the generalised spherical model 

N Angelescut, M BundaruS and G CostacheS 
t JINR Dubna, Moscow, Soviet Union 
j: Institute of Physics and Nuclear Engineering, Bucharest MG 6, Romania 

Received 17 August 1981 

Abstract. It is proved that the interface in the generalised spherical model (the D + 03 limit 
of the D-vector model) with Kac-Helfand type interactions is diffuse at all temperatures. 
The interface width is shown to be proportional to the thickness of the sample. The 
magnetisation profile is also obtained. 

A great deal of interest has been devoted recently to establishing the existence of a 
sharp interface and the roughening transition in different spin models (Gallavotti 1972, 
Dobrushin 1972, van Beijeren 1975, 1977, Weeks et a1 1973, Abraham and Robert 
1980, Abraham 1980). The existence of a sharp interface has been proved for the 
ferromagnetic Ising model in dimensions d 5 3 (Dobrushin 1972, van Beijeren 1975). 
The same problem has been studied within the spherical model (introduced by Berlin 
and Kac (1952)) by Abraham and Robert (1980), whoproved that the interface is in this 
case diffuse at all temperatures. They also showed that the magnetisation profile has 
some unphysical features, which led them to suggest that the model itself is inadequate 
for considering such ‘non-translationally invariant’ problems. Considering that the 
Berlin-Kac model can be obtained as the D + 00 limit of the D-vector isotropic model 
(the spherical limit) with homogeneous interactions (Kac and Thompson 197 l ) ,  one 
may think that a more appropriate model for studying non-homogeneous problems can 
be obtained by looking at the spherical limit of the D-vector model with non- 
translationally invariant interactions. This limit has been recently considered (Knops 
1973, Angelescu et a1 1979), and the generalised spherical model (in which the overall 
constraint is replaced by mean local spherical constraints) has been obtained. This 
model is still exactly soluble in the sense that the state of the system can be determined 
once the solution of a nonlinear system for one-spin expectations is provided. However, 
the technical problem of handling this nonlinear system in the case of short-range 
interactions is extremely involved. Therefore we shall confine ourselves in this Letter to 
considering Kac-Helfand (1963) type interactions, which are technically easier to 
handle. 

We shall prove that for the generalised spherical model with Kac-Helfand inter- 
actions thehterface is diffuse at all temperatures. Having in mind the king model 
where Kac-Helfand interactions clearly favour the sharp interface, we can expect that 
the result will hold true also for the generalised spherical model with short-range 
interactions. To define the model, let us consider an array of XD-dimensional spins 
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{ S p } Q = l , . . . , ~  of length D'", whose interaction energy is given by 

The spherical limit of the free energy per spin component equals the absolute minimum 
of 

+ 4 (h: ( f - f)-' R) + 3 Tr ( f - f ) 

taken over all diagonal matrices f for which f - f>O (see however Angelescu et a1 
(1979)). The function g ~ ( f )  is strictly convex and has a unique minimum point f"'), 
given by the solution of the system 

P-l(f-f);; = 1 -[(f-f)-'R];. (3) 
One identifies [(f'O'-f)-l~]p = mp with the local magnetisation at site p. 

For our purpose we shall consider X = NM spins Sir arranged in M parallel layers, 
each layer having N spins; i labels the layers and r the in-layer position of a spin. The 
interaction among spins is supposed to be 

* 
Jjr,jnr, = Jjj'Prr', 

Jjit = ~Sjj'+ SIi-j*1,1, Prrp = 1 / N. (4) 
We shall also consider the boundary layer spins as acted upon by oppositely directed 
magnetic fields, hi = H(Sil - S i M ) ,  and we shall let H -* 00 at the end of the calculations. 
The in-layer homogeneity leads to fi;ir = yi"(N) with {yl."'(N)} the unique solution of 
the system 

(Pyj)-'= l - [ ( r - J ) - ' h ] ~ - ( P N ) - ' [ ( r - J ) ~ ' - y T ' ] ,  i = 1 , 2  ,..., M, ( 5 )  

in the domain r - J > 0; here rij = yiSii. Let us note that {y:' '(N)} are symmetric and 
mi = [(r!$'-J)-'hIi are antisymmetric with respect to the middle plane. 

Next, we have to perform the thermodynamic limit (N+cY, ) .  In this respect it 
suffices to note that the minimum in (2) and the limit N + CY, can be taken in either order, 
whereupon the minimum point itself, { y? ) (N) } ,  converges to the unique minimum point 
of $(I?) = limN+- $ N M ( r ) .  Therefore, after performing the thermodynamic limit, one 
should study the absolute minimum of 

(2", ) 1 1 g(r) = - [ - 1 log det - r + ((r - J)- l  h, h ) + Tr r 
2M P 

on 
calculate the layer magnetisations as 

miM) = [(r(')- J)-'hIi, 

= {rlr - J 3 0, rij = yiSij}. Denoting by rcO) the minimum point of 9(r),  one can 

i = 1 , 2 ,  ..., M ;  

we note that this expression makes sense even when r(') - J  is singular, since r(')- J has 
a simple spectrum and is centro-symmetric, while h is centro-antisymmetric. 

We can now state the main results as follows: 
(i) mf&+i = 0 ( 1 / M )  for all P and all fixed i ;  
(ii) limM,, m [ z i l =  mB(P) COS T X ,  where mB(P) is the bulk magnetisation; 
(iii) lim mi"' = m i @ )  and mi(P)  approaches exponentially mB(P) when i + 00 and 

P f P C .  
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The result (i) implies that the interface is diffuse at all temperatures, (ii) shows that the 
interface width is of the order of M, while (iii) points out that the boundary conditions 
are felt effectively within a finite distance (proportional to the correlation length of the 
bulk) from the surfaces. Thus the non-physical behaviour obtained in the model 
studied by Abraham and Robert (1980) is no longer present. 

We shall indicate below the idea of the proof. As maybe already noticed, one of the 
main steps consists in finding the minimum point of 9, which can be either in the 
interior of 8 or on its frontier. Since there is a certain disparity between these cases, 
they seemingly cannot be handled on an equal footing. However this is not entirely 
true; provided we study closely the N + CO limit of rg) (which is rcO)), we can hope to 
obtain a unique description of both situations mentioned. To this end, note that 

provided lim (NA $A)-' > 0, 
N+CC 

where A%: is the minimum eigenvalue of r:)--J; in this case 
ai -limN~CC[N-1(rg'-J)ii1]1'2 will be the eigenvector of r c o ) - J  corresponding to the 
eigenvalue equal to zero. Taking account of ( 5 ) ,  it may be seen that if I'(O) is on the 
boundary of 8 it satisfies the system 

(7) 2 2  ( p g '  = 1 - m i - a j , 
where mi and ai > 0 are functions of r satisfying 

i = l , 2  ,..., M, 

( r - J ) m  = h, 

( r - J I a  = 0. 

On the other hand, when 1imN+&VA$:)-' = 0 one has I"O)-J > 0 and (7)-(9) still hold 
true (in this case by (9), ai = 0). Thus the minimum point problem reduces to solving the 
system (7)-(9). Observing that equations (8) and (9) are in fact recurrence relations (see 
equation (4)), the system (7)-(9) can be brought into the form 

ri+l= (ri/ri)Fp(ri)-ri-i, i = l , 2  , . . . ,  M, 

ro = (H, O ) r M + l =  (-H, 01, (10) 

ri = (mi, ai), i = l , 2  , . . . ,  M, 
and 

Fp ( x )  = x / p  (1 - x 2 )  - 7x. (11) 

Let us consider further the function 4p : R 2  x S + S x R 2  where S is the open unit disc of 
R 2 ,  defined by 

4p(r ,  rf) = (rf, (rf /r ' )Fp(rf)  - r ) ,  (12) 

which is a diffeomorphism. Its fixed points are 
(a) (o,o) for p s pc = (7 + 2)-', 
(b) (0,O) and the set {(r ,  r )  I r = m&)} for p > pc. 

It can be shown that when H + CO the system (10) becomes 

We are therefore interested in finding the properties of long 'trajectories' of &, i.e. 
sequences {ri}i=l, , . . ,M with arbitrary large M. The proof rests heavily on showing that 
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these trajectories must ‘spend much time’ near the fixed points. In order to do this one 
can use the fact that the trajectories of ~5~ are convex outside the circle of fixed points 
and concave inside. This implies easily that (Y = 0 for p <pc  and M large enough, in 
which case the system (10) reduces to the layer magnetisations system studied in much 
detail by Angelescu et a1 (1981). It is somewhat more complicated to show that for 
p >pc the long trajectories look typically as in figure 1; the trajectory points are 
practically uniformly distributed over angles and the outer points approach exponen- 
tially the circle of radius m ~ ( p ) .  This is exactly what we need in order to prove (i)-(iii). 

m 

Figure 1. A typical trajectory of 40. M = 37. 

Let us finally remark that the D-vector model with Kac-Helfand interactions is 
suited for a similar analysis, with ai playing the role of perpendicular magnetisations 
with respect to the magnetic field direction; one can assert that for every D 2 2  the 
interface is also diffuse. Loosely speaking, the local order parameters have the 
possibility to build up a Bloch wall of width M with low energy cost. 
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